Random Walks, Totally Unimodular Matrices and a Randomised Dual Simplex Algorithm

نویسندگان

  • Martin E. Dyer
  • Alan M. Frieze
چکیده

We discuss the application of random walks to generating a random basis of a totally unimodular matrix and to solving a linear program with such a constraint matrix. We also derive polynomial upper bounds on the combinatorial diameter of an associated polyhedron. •Supported by NATO grant RG0088/89 tSupported by NSF grants CCR-8900112, CCR-9024935 and NATO grant RG0088/89

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Random Edge

We show that a variant of the random-edge pivoting rule results in a strongly polynomial time simplex algorithm for linear programs max{cTx : x ∈ R, Ax 6 b}, whose constraint matrix A satisfies a geometric property introduced by Brunsch and Röglin: The sine of the angle of a row of A to a hyperplane spanned by n− 1 other rows of A is at least δ. This property is a geometric generalization of A ...

متن کامل

On the Shadow Simplex Method for Curved Polyhedra

We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al. (Discrete Comput. Geom. 52(1):102–115, 2014), Brunsch and Röglin (Automata, languages, and programming. Part I, pp. 279–29...

متن کامل

Csc5160: Combinatorial Optimization and Approximation Algorithms Topic: Min-max Theorem

In this lecture, we show the applications of the strong duality theorem, and discuss how to obtain min-max theorems and combinatorial algorithms from linear programming. We first introduce the 2 player, zero-sum game and show that this can be solved by minimax theorem and we also prove the minimax theorem by the LP-duality theorem. After that, we introduce some applications of minimax theorem, ...

متن کامل

A generalization of totally unimodular and network matrices

In this thesis we discuss possible generalizations of totally unimodular and network matrices. Our purpose is to introduce new classes of matrices that preserve the advantageous properties of these well-known matrices. In particular, our focus is on the polyhedral consequences of totally unimod­ ular matrices, namely we look for matrices that can ensure vertices that are scalable to an integral...

متن کامل

Lecture 4 — Total Unimodularity and Total Dual Integrality

Definition 1.1. A matrix A ∈ Zm×n is totally unimodular if the determinant of every square submatrix B ∈ Zk×k equals either −1, 0, or +1. Alternatively, by Cramer’s rule, A ∈ Zm×n is totally unimodular if every nonsingular submatrix B ∈ Zk×k has an integral inverse B−1 ∈ Zk×k. Recall: B−1 = 1 det B B ∗, where B∗ is the adjugate matrix (transpose of the matrix of cofactors) of B. One important c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 64  شماره 

صفحات  -

تاریخ انتشار 1992